TURBULENCE INTENSITY OF AN ASCENDING
DISPERSED FLOW

F. E. Spokoinyi and Z. R. Gorbis UDC 532.517.4:541.182.3

We obtained functions that approximately describe the change in the relative turbulence in-
tensity of hydrodispersed and gas~dispersed vertical flows and make it possible to explain
the different effects of solid particles on flow turbulence, A comparison was made with ex-
perimental data on heat exchange, which showed the results to be in qualitative agreement,

The influence of a discrete impurity on flow turbulence has been the subject of numerous experi~
mental and theoretical studies, Theoretical publications [1, 2] have dealt with horizontal laminar turbulent
flows. In the present investigation, we determined the turbulence intensity of a monodispersed vertical flow
in order to establish the conditions under which the presence of particles can have different effects on flow
turbulence,

We assume that the particles are small with respect to the scale of the turbulence and use the follow~
ing model of a quasihomogeneous flow:

pf =p (1 —B)+0,P,

p(~—p) 0.p
Pf vi + pf UTi. (2)
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The only important mass force is the force of gravity and, in view of the smallness of the particles
(neglecting their additional inertia), we obtain the following expression for the stabilized component of the
ascending flow:

Uy = U; —Ugdyy, @)

where the suspension rate vg with sufficiently small values for the flow criterion [3] can be regarded as in-
dependent of the particle concentration and channel geometry. In this case, the equation of motion for the
mixture acquires the following form, taking into account the rule of repeated subscripts [1]:

Opsug; 0
ot + X,
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where P and o, are respectively the pressure and viscous-friction stress in the flow. The discontinuity
equation

d
Pf + apfvfa =0

o X, ©)
is readily transformed to
Oy _ 0 B(l—P)ug
ox, = O (57)

The dispersed~medium flow is considered to be steady-state with respect to its average character-
istics and to move in one (vertical) direction OXj. It follows from the stationary condition that there cannot
be a trangverse flow of mass constant in direction, i.e,, the average mass transfer proceeds simply in the
direction of the OX; axis.
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Fig. 1. Relative turbulence intensity for dispersed flow as a
function of solid-particle concentration,

Fig, 2. Relative turbulence intensity of dispersed flow as a
function of complex A = vkv/v¢.

PfUfy = pgups = 0. (6)
It then follows from discontinuity equation (5) that 8p¢vy;/0X, = 0, whence it is easy to convert to the usual
expression for constancy of mass flow rafe:

ps0g; = puy (I —P) [1 - p] = const. @)

The flow can be treated as homogeneous and symmetric with respect to the vertical axis in the region of
quasistabilized motion, It then follows from Eq. (7) and 8vgy/ 86Xy = 0 that

ap/oxX, = 0. 8)
The symmetry condition for the average flow, taking Eq. (6) into account, yields
Uy = Ugg = 0. 9)

It follows from Eq. (8) that the last term on the right side of Eq. (4) and the entire right side of Eq. (5'} equal
zero., Barenblatt [1] neglected the first of these quantities only because of the smallness of 3. In this form,
these equations are identical to the equation of motion and discontinuity equation for a homogeneous com~
pressed liquid {1]. We can therefore use the turbulence-energy balance equation for such media given by
Monin and Yaglom [4]. Assuming both components of the dispersed flow to be incompressible, proceeding
from the semiempirical theory of turbulence, and taking into account Egs. (8), (8), and (9), we can exclude
from the balance equation the quantity pgv'e;, which is characteristic only of a compressible liquid:

P1Vy = PfY = (0, — 0) B'vf, = — (0, —p) KB—671—=0- (10)
In this case, we can use the appropriate energy balance equation for the flow of an incompressible medium,
From the physical standpoint, this means that the energy going to suspension of the particles comes from
the energy of average and not pulsational motion. Taking into account the simplifying assumptions made by
Monin and Yaglom [4], the energy of pulsating motion is described by the equation

oE T = a?’ni
ot Pf &P Vfe Ufi ——67; .

When we shift to a cylindrical coordinate system and introduce the turbulence-intensity expression

F 1 7 5
equation (11) acquires the form
by =  —— dus
BT TET Wt (13)

Using the theory of dimensionality, the specific dissipation of turbulent energy € can be written in the form
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where [ is the turbulence scale and ¢ is some dimensionless parameter. Taking into consideration the re-
lationship vvi, = =K8vf;/ or, where the turbulent-transfer coefficient K = b}/?, Eq. (13) has the form
dbs bi" dvg, \*
o = + 16}* (_“arfl ) . (14)

ol

The Reynolds equation is used as the formula for the average motion of the entire mixture; near the channel
walls, it can be written as

aaf %2
K5 =1%- (15)

The dynamic velocity of the quasihomogeneous dispersed flow v%‘ can be treated as independent of the co-
ordinates; it is a complex, experimentally determinable function of the properties of the continuous and
discrete components and of the average volume concentration, In Barenblatt's study [1], the value of V;f
in the equation for average motion was assumed to equal the dynamic flow velocity without impurities v*,
which, as will be shown below, cannot always be regarded as justified, It follows from Egs. (14) and (15)
that

ab B2 o

=Tt zb]:f/2 ‘ (16)

Equation (16) then yields the condition for existence of turbulent pulsations "steady-state" with respect to
intensity (6bg/ 81 = 0):

bf = sz; . (17)
Barenblatt [1] found that
bs = c* (1 —Ri). 17

The absence of the factor (1-Ri) in Eq. (17) is due to the fact that it reverts to one for vertical flows, since
the dimensionless parameter Ri, like the Richardson number, is proportional to 88/8X; = 0.

The dynamic velocity is determined from the expressions for tangential frictional stresses at the
boundaries for homogeneous and dispersed flows:

pv*

O = )\‘ " It pv*” »
’ (18)
U2 #2
Oyt = 7\,f p == pfvf .
Then
bf 52, 4t [
=airet =g [a] e (1) 6] 19)

If we assume v%‘: v*, as in Barenblatt's article [1], Eq. (19) for vertical flows would then lead us to con~-
clude that the turbulence intensity of the flow is independent of whether or not it contains impurities, This
conclusion would probably be valid only for suspensions of more or less uniform density, When the Karman
number (Ka = pl/ 2/v), a relative measure of the turbulent velocity pulsations, is used, the change in this
quantity when a discrete impurity is introduced into the flow amounts to

Kag _ v (_@)”z VLT (o, lp — 1) Bl A /A 20)

Ka v, \ b 1+ (ov,/ov—T1) B
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According to Duran [6], vertical flows of hydrosuspensions with a particle diameter of less than 50 y yield

the same pressure loss as pure water if it is expressed as the height of the mixture column, i.e., A/ 2

= pf/ p. Since the slip can be neglected for such small particles (v{ ~ v), we readily find from Eq. (20} that
Kaf/Ka =1, When the hydrodynamic flow contains larger particles, the pressure loss tends to its value in
pure water [6] and the average density of the mixture no longer plays a material role, i.e., A= 2. Hence

Kei _ T Gulo—DF
Ka 1+ (o0 /pv— 1P - @1)

This quantity may be only slightly larger or smaller than one, depending on the density of the particle ma-
terial and the particle size,

Gas~dispersed systems are characterized by pt/p > 1, Taking info account the Gasterstadt equa~
tion Af = A(1 +ku), Eq. (20) then has the form

Kar ‘/ _(i+k”)(1+ :y”) _ @22)

Ka 1+up

Calculations based on this equation are difficult, becasue of the lack of reliable generalized data
on the Gasterstadt coefficient k. Analysis of Eq, (22) showed that, with real values of k, v/vt, and u, the
value of Kag/Ka varies monotonically and tends toward the constant limiting value A = Vk({¥/ v¢)as the con-
centration increases.

Calculations were made in order to illustrate this aspect of Eq. (22) (Fig. 1). The Gasterstadt co~
efficient for a channel 0,1 m in diameter and particles with vg = 0.8 m/sec (solid line) and 5.5 m/sec (dash
line) was determined from Pal'tsev's formula [5]. The ambient~-medium (air) velocities are shown near the
curves (Fig. 1). It was thus established that the presence of particles with pt > p in vertical dispersed
flows can lead either to extinction of turbulence (A < 1) or to development of this process (A > 1), depend-
ing on the ratio of the quantities included in the complex A. When plotted on the coordinates Kap/Ka versus
A, the results of calculations for different particles and carrier-medium velocities converge with rather
good accuracy on individual constant-concentration lines (Fig. 2).

It is also of interest to compare the results obtained in calculating the relative turbulence intensity
of dispersed and pure flows with experimental data on the relative heat-transfer rate between such flows
and the wall (Fig. 3). Sergeev's dissertation [7], which we used for the comparison, gives direct experi-
mental data on Nug/Nu and all the quantities included in complex A, The experiments were conducted in a
vertical tube with a diameter of 78 mm and rapeseed was used as the dispersoid (vg ~ 8 m/sec). The cal-
culated values of Kag/Ka are represented by the solid line and the experimental Nug/Nu by the dash line;
curves 1 correspond to v ~ 17 m/sec and curves 2 to v ~ 14 m/sec. It follows from Fig, 3 that the attenu~
ation of flow turbulence due to the properties of the discrete and continuous components leads to a decrease
in heat-transfer rate at small flow concentrations, When the concentration is increased, the rate of exter-
nal heat transfer begins to rise, This is due to the fact that the negative influence of the particles on flow
turbulence becomes constant and the effective volume heat capacity of the flow and the perturbation of the
boundary layer under the impact of particles from the wall (positive factors for heat transfer) increase with
rising concentration,

Calculations made with Eq. (22) thus indicate qualitative agreement between data on the mechanics
and heat transfer of vertical dispersed flows; the observed patterns enable us to explain the different effects
of solid particles on the turbulence of a monodispersed flow.

NOTATION

is the density;

is the velocity;

is the true volume concentration;

is the gravimetric flow concentration;

is the turbulence intensity;

is the frictional drag coefficient;

is the Gasterstadt coefficient;

is the dimensionless complex; quantities without subscripts pertain to the continuous dispersed-flow
component, those with the subsecript T tothe discrete component, and those with the subscript f to the
total flow.
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