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We obtained functions that  approx imate ly  desc r ibe  the change in the re la t ive  turbulence in-  
tens i ty  of hyd rod i s pe r s ed  and g a s - d i s p e r s e d  ver t i ca l  flows and make  it poss ib le  to explain 
the different  effects  of solid pa r t i c l e s  on flow turbulence.  A compar i son  was made with ex-  
pe r imen ta l  data on heat  exchange,  which showed the resu l t s  to be in quali tat ive ag reemen t .  

The influence of a d i sc re t e  impur i ty  on flow turbulence has  been the subject  of numerous  expe r i -  
menta l  and theore t ica l  s tudies .  Theore t i ca l  publ icat ions [1, 2] have dealt  with hor izontal  l a m i n a r  turbulent  
flows. In the p r e s en t  invest igat ion,  we de te rmined  the turbulence intensi ty of a monod i spe r sed  ver t i ca l  flow 
in o rde r  to es tab l i sh  the conditions under  which the p r e s e n c e  of pa r t i c l e s  can have different  effects  on flow 
turbulence .  

We a s s u m e  that the pa r t i c l e s  a re  smal l  with r e spec t  to the sca le  of the turbulence and use the follow- 
ing model  of a quasihomogeneous  flow: 

pf ---- p (1 - -  ~) --k PT~, (1) 

vii ~ p (I - -  ~) v~ § p~p 
pf ~ vT~" (2) 

The only impor tan t  m a s s  force  is the force  of gravi ty  and, in view of the sma l lnes s  of the pa r t i c l e s  
(neglecting the i r  additional iner t ia)  ~ we obtain the following expres s ion  for  the s tabi l ized component  of the 
ascending flow: 

v~i = v ,  - -  vs611, (3) 

where  the suspens ion ra te  v s with sufficiently smal l  values  for  the flow c r i t e r ion  [3] can be r ega rde d  as in-  
dependent of the pa r t i c l e  concentra t ion  and channel geomet ry .  In this case ,  the equation of motion for  the 
mix tu re  acqu i res  the following fo rm,  taking into account the rule of repea ted  subsc r ip t s  [1]: 

a---PfVf---Z Jc O [ ] 
01: ~ (P:fVfiV:f= q- PS~=--a i~) -~- -pf  g + pp~ a [~(1--[3) v~ 8~1, (4) 

Pf aX~ Pf 

where  P and ~ i a  a r e  r e spec t i ve ly  the p r e s s u r e  and v i scous - f r i c t i on  s t r e s s  in the flow. 
equation 

ap__ L + .  apfvf~ _- 0 a~ aX~ 

is  readi ly  t r a n s f o r m e d  to 

The discont inui ty  

( 5 )  

O v f ~ _  ( p _ p )  0 ~ ( 1 - - ~ ) v  s 
OX~ aX t pf (5 ~) 

The d i s p e r s e d - m e d i u m  flow is cons idered  to be s t eady - s t a t e  with r e spec t  to i ts  ave rage  c h a r a c t e r -  
i s t i c s  and to move in one (vert ical)  d i rec t ion  OX 1. I t  follows f rom the s ta t ionary  condition that there  cannot 
be  a t r a n s v e r s e  flow of m a s s  constant  in di rect ion,  i .e . ,  the ave rage  m a s s  t r a n s f e r  p roceeds  s imply  in the 
d i rec t ion  of the OX i axis .  
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Fig.  1. Relat ive  turbulence intensi ty for  d i spe r sed  flow as a 
function of so l id -pa r t i c l e  concentra t ion.  

Fig.  2. Rela t ive  turbulence intensi ty  of d i spe r sed  flow as a 
function of complex A = 

~fvf,  = t~fvf3 = o. (6) 

I t  then follows f rom discontinuity equation (5) that a p f v f l / a x  ~ = 0, whence it i s  easy  to conver t  to the usual 
exp re s s ion  for  constancy of m a s s  flow rate:  

Pfvft = pvi(1 --~)[]: + ~] = const. (7) 

The flow can be t r ea t ed  as homogeneous and s y m m e t r i c  with r e spec t  to the ver t i ca l  axis in the region of 
quas is tab i l ized  motion.  It then follows f rom Eq. (7) and a v f J  aX 1 = 0 that 

o~/ax~ = o. (8 )  

The s y m m e t r y  condition for  the ave r age  flow, taking Eq. (6) into account,  yields  

vf2 = "vf~3 = O. (9) 

I t  follows f r o m  Eq. (8) that the l as t  t e r m  on the r ight  side of Eq.  (4) and the ent i re  r ight  side of Eq. (5') equal 
ze ro .  Barenbla t t  [1] neglected the f i r s t  of these quanti t ies  only because  of the sma l lnes s  of ft. In this f o rm ,  
these  equations a re  identical  to the equation of mot ion and discontinuity equation for  a homogeneous  c o m -  
p r e s s e d  liquid [1]. We can the re fo re  use the tu rbu lence -ene rgy  balance  equation for  such med ia  given by 
Monin and Yaglom [4]. Assuming  both components  of the d i spe r sed  flow to be i ncompres s ib l e ,  p roceeding  
f r o m  the s e m i e m p i r i c a l  theory  of turbulence ,  and taking into account Eqs.  (6), (8), and (9), we can exclude 
f rom the balance  equation the quantity pfv,fi  , which is c h a r a c t e r i s t i c  only of a c o m p r e s s i b l e  liquid: 

, , O~ _ O. ( 1 0 )  

In this case ,  we can use  the appropr ia te  ene rgy  ba lance  equation for  the flow of an i ncompres s ib l e  medium.  
F r o m  the physical  s tandpoint ,  this means  that the ene rgy  going to suspens ion of the pa r t i c l e s  comes  f r o m  
the energy  of ave rage  and not pulsat ional  mot ion '  Taking into account the s impl i fying assumpt ions  made by 
Monin and Yaglom [4], the ene rgy  of pulsat ing mot ion is desc r ibed  by the equation 

OE �9 , 0 ~  
OT = - "p-f e - - - - p f  Vfc, Vfi " - ~ - ~  . 

When we shift  to a cyl indr ica l  coordinate  s y s t e m  and introduce the tu rbulence- in tens i ty  exp res s ion  

b f  = Z / p f  = - -~  of= vf= (12) 

equation (11) acqu i res  the f o r m  

Obf _ -~ �9 , & f i  
8T - -  v f l V f r  Or (13) 

Using the theory  of d imens ional i ty ,  the speci f ic  d iss ipat ion of turbulent  ene rgy  ~ can be wri t ten  in the fo rm 
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Fig. 3. Relat ive  turbulence intensi ty 
and re la t ive  h e a t - t r a n s f e r  ra te  for  d i s -  
p e r s e d  flow as a function of pa r t i c l e  
concentra t ion.  

-~= b3f/2/l#, 

where  1 is  the turbulence scale  and c is some d imens ion less  p a r a m e t e r .  Taking into cons idera t ion  the r e -  
lat ionship ' ' vflVfr = - K a v f J  a r ,  where  the t u rbu l en t - t r an s f e r  coefficient  K =/b}/2,  Eq. (13) has  the fo rm 

abf + { / s 
-O~ = c4l ~ ~ ] . (14) 

The Reynolds equation is used  as the fo rmula  for  the ave rage  mot ion of the ent i re  mixture ;  nea r  the channel 
wal ls ,  it can be wri t ten  as 

a v f l  _ *' 
K ~ - vf . (15) 

The dynamic veloci ty  of the quasihomogeneous d i spe r sed  flow v~ can be t r ea t ed  as independent of the co-  
ordinates ;  it is  a complex ,  exper imen ta l ly  de te rminab le  function of the p r o p e r t i e s  of the continuous and 
d i sc re t e  components  and of the ave rage  volume concentra t ion.  In Ba renb l a t t ' s  study [1], the value of v~ 
in the equation for  ave rage  motion was a s s u m e d  to equal the dynamic flow veloci ty  without impur i t i e s  v*, 
which, as will be shown below, cannot a lways be r ega rded  as just if ied.  It  follows f rom Eqs .  (14) and (15) 
that 

abf b}/2 v}" 
a~---  c4"---i - + l b } /~"  (16) 

Equation (16) then yields  the condition for  exis tence  of turbulent  pulsat ions " s t eady - s t a t e "  with r e spec t  to 
in tensi ty  ( 0 b f / 8 r  = 0): 

bf = 6so *' f * (17) 

Barenb la t t  [1] found that 

bf = c2v *~ (I - -  Ri). (17 ') 

The absence  of the fac tor  ( 1 - R i )  in Eq. (17) is  due to the fact  that it r e v e r t s  to one for  ver t ica l  flows, since 
the d imens ion less  p a r a m e t e r  Ri, l ike the Richardson  number ,  is  propor t iona l  to a ~ / a x i  = 0. 

The dynamic veloci ty  is de te rmined  f rom the exp re s s ions  for  tangential  f r ic t ional  s t r e s s e s  at the 
boundar ies  for  homogeneous and d i spe r sed  flows: 

~v ~ pv~ *' = =- pv , 
8 (18) 

pV s ,2 
~lwf = n f - - ~  = p f V f  . 

Then 

I f  we a s s u m e  v~-- v*, as in Barenbla tUs  a r t i c le  [1], Eq. (19) for  ve r t i ca l  flows would then lead us to con-  
clude that the turbulence intensi ty  of the flow is independent of whether  or  not it contains impur i t i e s .  This  
conclusion would p robab ly  be  valid only for  suspens ions  of m o r e  or  l e s s  uni form density.  When the K a r m a n  
number  (Ka = b i / 2 / v ) ,  a re la t ive  m e a s u r e  of the turbulent  veloci ty  pulsa t ions ,  is used,  the change in this 
quantity when a d i s c r e t e  impur i ty  is  int roduced into the flow amounts  to 

t(af __ v ( ~ )  �89 ] / [I+(pT/p--1)[3]~f/~ 
Ka v~ - -  = 1 -+- (p~v~/pv--  1) ~ (20) 
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According to Duran [6], ve r t i ca l  flows of hydrosuspens ions  with a pa r t i c le  d i ame te r  of l e s s  than 50 p yield 
the s ame  p r e s s u r e  loss  as pure  wa te r  if it is e x p r e s s e d  as the height of the mix tu re  column, i .e . ,  ~ f /  
= p f / p .  Since the s l ip can be neglected for  such smal l  pa r t i c l e s  (vt ~ v), we readi ly  find f rom Eq. (20) that 
K a f / K a  = 1. When the hydrodynamic  flow contains l a r g e r  pa r t i c l e s ,  the p r e s s u r e  loss  tends to i ts  value in 
pure  wa te r  [6] and the ave rage  densi ty  of the mix tu re  no longer  p lays  a ma t e r i a l  ro le ,  i . e . ,  ~f = ~. Hence 

Kaf ~' 1 + (p~/p-- 1) 13 
K ~  = 1 q- (p~v~/pv - -  1) [~ (21) 

This  quantity may  be only sl ightly l a r g e r  or  s m a l l e r  than one, depending on the density of the par t ic le  m a -  
t e r ia l  and the par t ic le  s ize .  

G a s - d i s p e r s e d  s y s t e m s  a re  c h a r a c t e r i z e d  by P t / P  >> 1. Taking into account the Gas te r s t ad t  equa-  
tion ~f = ~(1 + kp), Eq. (20) then has  the fo rm 

[ / /  ( l + k ~ ) (  1 +  v ) 
Kaf v~- l~ (22) 
Ka 1+1~ 

Calculat ions based  on this equation a re  difficult ,  becasue  of the lack of re l iab le  genera l ized  data 
on the Gas t e r s t ad t  coeff icient  k. Analysis  of Eq. (22) showed that,  with rea l  values  of k,  v / v  t ,  and p, the 
value of K a f / K a  v a r i e s  monotonical ly  and tends toward the constant  l imi t ing  value A = ~ t ) a s  the con-  
cent ra t ion  i n c r e a s e s .  

Calculat ions were  made in o rde r  to i l lus t ra te  this aspec t  of Eq. (22) (Fig. 1). The Gas t e r s t ad t  co-  
efficient  for  a channel 0.1 m in d i am e t e r  and pa r t i c l e s  with v s = 0.8 m / s e c  (solid line) and 5.5 m / s e c  (dash 
line) was de te rmined  f rom P a l ' t s e v ' s  fo rmula  [5]. The amb ien t -med ium (air) ve loci t ies  a r e  shown nea r  the 
cu rves  (Fig. 1). It  was thus es tab l i shed  that the p r e s e n c e  of pa r t i c l e s  with Pt >> P in ver t i ca l  d i spe r sed  
flows can lead e i ther  to extinction of turbulence (A < 1) or  to development  of this p r o c e s s  (A > 1), depend-  
ing on the ra t io  of the quant i t ies  included in the complex  A. When plotted on the coordinates  K a f / K a  v e r s u s  
A, the r e su l t s  of calcula t ions  for  different  pa r t i c l e s  and c a r r i e r - m e d i u m  ve loc i t ies  converge  with r a t h e r  
good accu racy  on individual cons tan t -concen t ra t ion  l ines  (Fig. 2). 

I t  is also of i n t e re s t  to com pa re  the r e su l t s  obtained in calculat ing the re la t ive  turbulence intensi ty 
of d i spe r sed  and pure  flows with exper imen ta l  data  on the re la t ive  h e a t - t r a n s f e r  ra te  between such flows 
and the wall  (Fig. 3). S e r g e e v ' s  d i s se r t a t ion  [7], which we used  for  the compar i son ,  gives d i rec t  e x p e r i -  
menta l  data on Nuf /Nu and all the quanti t ies  included in complex A. The expe r imen t s  were  conducted in a 
ve r t i ca l  tube with a d i am e t e r  of 78 m m  and r a p e s e e d  was  used  as the d i spe r so id  (v s ~ 8 m / s e c ) .  The ca l -  
culated values  of K a y / K s  are  r e p r e s e n t e d  by the solid l ine and the exper imen ta l  Nuf /Nu by the dash line; 
cu rves  1 co r r e spond  to v ~- 17 m / s e c  and curves  2 to v -~ 14 m / s e c .  It  follows f rom Fig.  3 that  the a t tenu-  
ation of flow turbulence due to the p r o p e r t i e s  of the d i sc re t e  and continuous components  leads  to a dec rea se  
in h e a t - t r a n s f e r  ra te  at smal l  flow concent ra t ions .  When the concentra t ion is  i nc reased ,  the ra te  of e x t e r -  
nal heat  t r a n s f e r  begins  to r i se .  This  is due to the fact  that the negat ive influence of the pa r t i c l e s  on flow 
turbulence b e c o m e s  constant  and the effect ive volume heat  capaci ty  of the flow and the per tu rba t ion  of the 
boundary l aye r  under  the impac t  of pa r t i c l e s  f rom the wall  (positive f ac to r s  for  heat  t r ans fe r )  i nc rea se  with 
r i s ing  concentra t ion.  

Calculat ions made  with Eq. (22) thus indicate quali tat ive ag reemen t  between data on the mechan ics  
and heat  t r a n s f e r  of ve r t i ca l  d i spe r sed  flows; the obse rved  pa t t e rns  enable  us to explain the different  ef fec ts  
of solid pa r t i c l e s  on the turbulence  of a m on od i spe r s ed  flow. 

NOTATION 

p is the density;  
v is the veloci ty;  
fl is  the t rue  volume concentra t ion;  
# is  the g r a v i m e t r i c  flow concentrat ion;  
b is  the turbulence intensity;  

is  the f r ic t ional  d rag  coefficient;  
k is the Gas t e r s t ad t  coefficient;  
A is  the d imens ion less  complex;  quant i t ies  without subsc r ip t s  pe r ta in  to the continuous d i spe r sed - f low 

component ,  those with the subsc r ip t  T to the d i sc re t e  component ,  and those with the subsc r ip t  f to the 
total flow. 
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